Interactions between Cells and Nanoscale Surfaces of Oxidized Silicon Substrates

نویسندگان

  • Chung - Yao Yang
  • Lin - Ya Huang
چکیده

The importance for manipulating an incorporated scaffold and directing cell behaviors is well appreciated for tissue engineering. Here, we developed newly nano-topographic oxidized silicon nanosponges capable of being various chemical modifications to provide much insight into the fundamental biology of how cells interact with their surrounding environment in vitro. A wet etching technique is exerted to allow us fabricated the silicon nanosponges in a high-throughput manner. Furthermore, various organo-silane chemicals enabled self-assembled on the surfaces by vapor deposition. We have found that Chinese hamster ovary (CHO) cells displayed certain distinguishable morphogenesis, adherent responses, and biochemical properties while cultured on these chemical modified nano-topographic structures in compared with the planar oxidized silicon counterparts, indicating that cell behaviors can be influenced by certain physical characteristic derived from nano-topography in addition to the hydrophobicity of contact surfaces crucial for cell adhesion and spreading. Of particular, there were predominant nano-actin punches and slender protrusions formed while cells were cultured on the nano-topographic structures. This study shed potential applications of these nano-topographic biomaterials for controlling cell development in tissue engineering or basic cell biology research. Keywords—Nanosponge, Cell adhesion, Cell morphology

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoscale aggregate structures of trisiloxane surfactants at the solid-liquid interface.

The self-associating structures at the solid-liquid interface of three nonionic trisiloxane surfactants ((CH3)3SiO)2Si(CH3)(CH2)3(OCH2CH2)n OH (n = 6, 8, and 12), or BEn, are studied as a function of substrate properties by atomic force microscopy (AFM) imaging and force measurement. These trisiloxane surfactants are known as superwetters, which promote rapid spreading of dilute aqueous solutio...

متن کامل

Cell adhesion, morphology and biochemistry on nano-topographic oxidized silicon surfaces.

Manipulating an incorporated scaffold to direct cell behaviors play a key role in tissue engineering. In this study, we developed novel nano-topographic oxidized silicon nanosponges capable of being modified with various chemicals of a few nm in thickness to gain further insight into the fundamental biology of cell-environment interactions in vitro. A wet etching technique was applied to fabric...

متن کامل

Nanoscale wettability of self-assembled monolayers investigated by noncontact atomic force microscopy.

We report on a novel technique to nucleate nanometer-sized droplets on a solid substrate and to image them with minimal perturbation by noncontact atomic force microscopy (NC-AFM). The drop size can be accurately controlled, thus permitting hysteresis measurements. We have studied the nanoscale wettability of several methyl-terminated substrates prepared by the self-assembly of organic molecule...

متن کامل

Substrate- and time-dependent photoluminescence of quantum dots inside the ultrathin polymer LbL film.

The photoluminescence of CdSe/ZnS quantum dots (QDs) in different configurations at solid surfaces (glass, silicon, PDMS, and metals) is considered for three types of organization: QDs directly adsorbed on solid surfaces, separated from the solid surface by a nanoscale polymer film with different thickness, and encapsulated into a polymer film. The complete suppression of photoluminescence for ...

متن کامل

One step growth of protein antifouling surfaces: monolayers of poly(ethylene oxide) (PEO) derivatives on oxidized and hydrogen-passivated silicon surfaces.

We compare two routes for creating protein adsorption-resistant self-assembled monolayers (SAMs) by chemical modification of silicon surfaces with poly(ethylene oxide) (PEO) oligomeric derivatives. The first route involves the assembly of 2-methyl[(polyethyleneoxy)propyl]trichlorosilane (Cl3SiMPEO) films onto oxidized silicon surfaces (OH-SiO(x)) either by a liquid-phase process at room tempera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012